Cross-species transmission of gibbon and orangutan hepatitis B virus to uPA/SCID mice with human hepatocytes

Pattaratida Sa-nguanmooa,1, Yasuhito Tanakab,1, Parntep Ratanakornc, Masaya Sugiyamad, Shuko Murakami, Sunchai Payungporne, Angkana Sommanustweechaif, Masashi Mizokamid, Yong Poovorawan,∗

a Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
b Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Kawaasumi, Mizuho, Nagoya 467-8601, Japan
c Faculty of Veterinary Science, Mahidol University, Nakhon-Pathom 73170, Thailand
d The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Kounodai, Ichikawa 272-8516, Japan
e Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
f Dusit Zoo, Zoological Park Organization, Bangkok 10300, Thailand

Article history:
Received 10 February 2011
Received in revised form 31 March 2011
Accepted 1 April 2011
Available online 12 April 2011

Keywords:
Non-human primate
Cross-species transmission
Chimeric mouse
Phylogenetic analysis
HBV cccDNA
Immunofluorescence method

ARTICLE INFO

ABSTRACT

To investigate the potential of cross-species transmission of non-human primate HBV to humans, severe combined immunodeficiency mice transgenic for urokinase-type plasminogen activator, in which the mouse liver has been engrafted with human hepatocytes, were inoculated with non-human primate HBV. HBV-DNA positive serum samples from a gibbon or orangutan were inoculated into 6 chimeric mice. HBV-DNA, hepatitis B surface antigen (HBsAg), and HB core-related antigen in sera and HBV cccDNA in liver were detectable in 2 of 3 mice each from the gibbon and orangutan. Likewise, applying immunofluorescence HBV core protein was only found in human hepatocytes expressing human albumin. The HBV sequences from mouse sera were identical to those from orangutan and gibbon sera determined prior to inoculation. In conclusion, human hepatocytes have been infected with gibbon/orangutan HBV.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Hepatitis B is caused by hepatitis B virus (HBV), a hepatotropic virus of the family Hepadnaviridae. This family comprises two genera, Avihepadnavirus and Orthohepadnavirus which can infect birds and mammals, respectively (Mason et al., 2005). As for humans, approximately 350 million chronic carriers have been infected by HBV worldwide (Lavanchy, 2004) and 15–40 percent have developed liver cirrhosis and hepatocellular carcinoma (Lee, 1997; McQuillan et al., 1989; Sharma et al., 2005). In addition to humans, HBV also infects higher non-human primates (apes) such as orangutans (Pongo pygmaeus), gibbons (Hylobates sp. and Nomascus sp.), gorillas (Gorilla gorilla), and chimpanzees (Pan troglodytes) (Grethe et al., 2000; MacDonald et al., 2000; Makuwa et al., 2003; Noppornpanth et al., 2003; Sall et al., 2005; Sa-nguanmoo et al., 2008; Starkman et al., 2003; Warren et al., 1998). In comparison with human HBV, non-human primate HBVs contain a 33 nucleotide deletion in the PreS1 gene and all non-human primate HBVs cluster within their respective group separate from each human HBV genotype (Grethe et al., 2000; Kramvis et al., 2005; Robertson, 2001; Takahashi et al., 2000).

Several experiments have been conducted to study cross-species transmission of human HBV to non-human primates. Human HBsAg positive sera were intravenously inoculated into chimpanzees. In all experiments, inoculated chimpanzees displayed HBsAg and elevated ALT (Scott et al., 2000). In 1977, Bancroft et al. inoculated pooled saliva collected from 5 human carriers into gibbons. Gibbons which received subcutaneous injections of the pooled saliva developed serological markers of HBV infection. In contrast, gibbons infected via either the nasal or oral route did not show evidence of HBV infection (Bancroft et al., 1977). The negative results in this study are probably attributable to the lack of a sufficiently sensitive test available at that time. Alter et al. transmitted semen and saliva of carrier patients to chimpanzees. Chimpanzees developed HBsAg and elevated ALT after inoculation (Alter et al., 1977). In 1980, Scott et al. inoculated semen donated by HBsAg and HBeAg positive patients...
into gibbons via the subcutaneous and vaginal route. Moreover, saliva of carrier patients was pooled and inoculated into gibbons via the subcutaneous and oral route. The results showed that semen and saliva from carrier patients cause asymptomatic disease in gibbons when transmitted via the subcutaneous or vaginal route, yet not via the oral route (Scott et al., 1980).

In addition to these experiments, Mimms et al. performed studies by infecting a chimpanzee with gibbon HBV. The HBV-DNA sequence from this chimpanzee was similar to that of gibbon HBV (Mimms et al., 1993). In conclusion, human HBV can be transmitted to non-human primates and cross-species transmission of non-human primate HBV can occur among various non-human primate species. However, cross-species transmission of non-human primate HBV to humans has not yet been supported by scientific evidence. To avoid performing experiments in humans, severe combined immunodeficiency mice transgenic for urokinase-type plasminogen activator, with the liver replaced with human hepatocytes (chimeric mice) serve as a suitable model for studies on human liver-specific pathogens such as HCV and HBV, human hepatic metabolism of pharmaceutical agents, and human hepatic toxicity of candidate anti-proliferative agents (Kneteman and Mercer, 2005). The mice present evidence that more fully characterizes the repopulation of the mouse liver with human hepatocytes (Meuleman et al., 2005). Histological studies have revealed that chimeric mice show evidence of human hepatocyte replacement integration with infiltration into mouse liver. Moreover, human albumin and 21 other human specific proteins can be detected in mouse sera (Dandri et al., 2001; Mercer et al., 2001). Subsequently, these mice were used to support woodchuck and human hepatocyte culture and were supported infection with woodchuck hepatitis virus (WHV) and HBV (Meuleman et al., 2005; Petersen et al., 1998; Tabuchi et al., 2008).

The aim of this study has been to demonstrate that non-human primate HBV can be replicated in human hepatocytes in order to consider preventive measures in case of potential HBV transmission from non-human primates to humans.

2. Materials and methods

This study was approved by the Faculty of Veterinary Science, Animal Care and Use Committee, Mahidol University. All experiments were performed in a biosafety level 2 laboratory.

2.1. Gibbon and orangutan HBsAg-positive serum

To study cross-species transmission of non-human primate HBV to humans, the HBsAg and HBV-DNA positive sera of white-cheeked gibbon (Nomascus leucogenys) and orangutan (P. pygmaeus) were collected from Dusit zoo, Bangkok and Khao Pratub Chang Wildlife Breeding Center, Ratchaburi, Thailand, respectively. These sera constitute the stored surplus sera from a previous study (Sa-nguanmoo et al., 2008).

2.2. Chimeric mice inoculation

Twelve-week-old SCID mice transgenic for urokinase-type plasminogen activator with human hepatocytes (PhoenixBio Co, Ltd., Hiroshima, Japan) were used in this study (Tateno et al., 2004). Real-time PCR was employed to detect non-human primate HBV DNA concentration in gibbon and orangutan serum. This detection method has been shown elsewhere (Abe et al., 1999).

The minimum infectious dose of pre-acute and late acute HBV for HBV transmission to chimeric mice with human hepatocyte repopulation is approximately 10^0 and 10^2 copies (Tabuchi et al., 2008). In this study, 10^2 gibbon or orangutan HBV genome equivalents were intravenously inoculated into 3 chimeric mice of each group. However, none of the chimeric mice showed evidence of HBV markers until week 4 after inoculation. Then, all chimeric mice were re-inoculated with 10^3 genome equivalents.

2.3. Serum collection and HBV DNA extraction

Twenty microliter serum samples were collected once a week after inoculation. HBV DNA was extracted from 5 μl mouse sera by using the QIAamp® DNA Mini kit (QIAGEN, QIAGEN Sciences Inc., MD) following the manufacturer’s recommendation.

2.4. HBV DNA quantitative method

HBV DNA quantity was determined by real-time PCR (ABI 7500 Fast Real-time PCR, Applied Biosystems, Foster City, CA). To that end, the small S region was amplified as previously described (Abe et al., 1999). Briefly, 5 μl of DNA were subjected to quantitative HBV DNA analysis by ABI 7500 Fast Real-time PCR (Applied Biosystems, Foster City, CA). The reaction mixture comprised 12.5 μl TaqMan® Universal PCR MasterMix (Applied Biosystems, Foster City, CA), 0.5 μl of 10 μM forward primer (HBFS2: 5′-CTTACAGGTCGTATGCC-3′), 0.5 μl of 10 μM reverse primer (HBSR2: 5′-AAAGCCGAGTAGGCT-3′), 0.5 μl of 10 μM probe (HBSP2G: FAM-ATGTCTGGCTGTATGGC- TAMRA) and 6 μl distilled water. The real-time PCR was performed under the following conditions: 95 °C for 10 min, followed by 45 cycles of 95 °C for 15 s and 60 °C for 30 s, and 4 °C for the holding step. The HBV viral load in unknown samples was calculated by comparison with the standard curve. The detection limit in this study was 1000 copies/ml due to the small sample volume.

2.5. DNA extraction from mouse liver tissue and cccDNA detection in liver and sera of infected chimeric SCID mice

Mouse liver tissues from one HBV-DNA positive mouse each from the gibbon and orangutan HBV inoculation group were collected at week 15 after inoculation. To extract DNA from mouse liver tissue, 25 mg of liver tissue were extracted by using the DNeasy® Blood & Tissue kit (QIAGEN, QIAGEN Sciences Inc., MD) and eluted in 200 μl of elution buffer. HBV cccDNA was detected by conventional PCR (GeneAmp® PCR System 9700, Applied Biosystems, Foster City, CA). Primer sequences have been previously published (Suzuki et al., 2009). Partially double-stranded HBV DNA could not be amplified by these primers. The details have been previously described (Mason et al., 1998). Briefly, 5 μl of DNA were subjected to amplification by GeneAmp® PCR System 9700 (Applied Biosystems, Foster City, CA). The reaction mixture comprised 1 μl of Ampli Taq Gold® (Applied Biosystems, Foster City, CA), 2.5 μl of 10× PCR bufer containing 15 mM MgCl₂, 2 μl of GeneAmp® dNTP Mix (Applied Biosystems, Washington, UK), 1 μl of 10 μM forward primer (cccF2: 5′-CGTCTGTGCTCCCTCATC-3′), 1 μl of 10 μM reverse primer (cccR4: 5′-GCACAAGGGAAGGCTTGAA-3′), and 13.3 μl distilled water. The PCR was performed under the following conditions: 96 °C for 10 min, followed by 45 cycles of 95 °C for 30 s, 60 °C for 30 s, and 72 °C for 45 s, and 4 °C for the holding step.

2.6. Entire genome sequencing and phylogenetic analysis

Mouse serum samples positive for HBV DNA were subjected to further studies by sequencing the entire genome sequences. To amplify the entire genome, 1 μl of DNA re-suspended solution was used as template for round 1 PCR. The entire genome was distinguished into two segments (fragment A and fragment B). Fragment A was amplified by 10 μM forward primer (HBV17F-SARU: 5′-AAAGCCGAGTAGGCT-3′) and 10 μM reverse...
primer (HBV1799R-SARU 5′-GCAACATATGCTGACGCTCTC-3′). Fragment B was amplified by 10 μM forward primer (HBV1595F-SARU: 5′-CTCACTCTGTGCTAACGGTGC-3′) and 10 μM reverse primer (HBV2628R-SARU: 5′-CTCACAGAGCAGTCTACGACGTG-3′). Both fragment A and fragment B used the same reaction mixture as follows: 5 μl of 2.5 mM dNTP, 2 μl of 10 μM forward primer, 2 μl of 10 μM reverse primer, 0.33 μl of LA-Taq (TaKaRa BIO INC. Shiga, Japan), and 29.67 μl distilled water. The amplification method was performed on GeneAmp® PCR System 9700 (Applied Biosystems, Foster City, CA). The thermal cycle was continued as follows: 95 °C for 2 min (pre-denaturation) and followed by 35 cycles of 94 °C for 30 s, 60 °C for 30 s and 72 °C for 2 min, and 72 °C for 15 min (final extension).

For the second round PCR, 2 μl of round 1 PCR was used as template. Round 1 PCR product of fragment A was nested by HBV47F-SARU forward primer (5′-CCTGATATTTTCTGCT-TGGTGCTCCAG-3′) and HBV1760R-SARU reverse primer (5′-TAACTTGTCGTCTCCTCACCCTAATCTC-3′). The first round 1 PCR product of fragment B was nested by HBV1608F-SARU forward primer (5′-GCGTGGAGACCCACCGTG-3′) and HBV201R-SARU reverse primer (5′-TGTACACGACGAGGCGTTCTAGG-3′). Both fragment A and fragment B used reaction mixtures as round I PCR except increasing in the first round PCR template to 2 μl and adjusting distilled water to 28.67 μl. The amplification program was performed as follows: 95 °C for 2 min (pre-denaturation) and followed by 35 cycles of 94 °C for 30 s, 60 °C for 30 s and 72 °C for 2 min, and 72 °C for 20 min (final extension).

The second round PCR products were segregated by electrophoresis on 1% agarose gel stained with ethidium bromide. The bands of PCR products were purified using the QiAquick Gel Extraction kit (QIAGEN GmbH, Hilden, Germany). Purified products were further analyzed by ABI PRISM 3100 Genetic Analyzer (Applied Biosystems, Foster City, CA).

The genome was sequenced using the 8 primer sets previously published (Sugauchi et al., 2001). Cycle sequencing was performed using the BigDye Terminator 3.1V cycle sequencing kit (Applied Biosystems, Foster City, CA) according to the manufacturer’s recommendations. The conditions for sequencing were programmed into the GeneAmp® PCR System 9700 (Applied Biosystems, Foster City, CA) as previously reported (Sugauchi et al., 2001). Nucleotide sequences were edited and assembled using SEQMAN 4.00 (LASERGENE program package, DNASTAR, DNASTAR Inc., Madison, WI). All complete HBV genomes isolated from mouse sera were compared to nucleotide sequences available at the GenBank database by using the Blast program (NCBI, Bethesda, MD). Moreover, the HBV sequences obtained from mouse sera were compared with gibbon and orangutan HBV strains determined prior to inoculation and also compared with other non-human primate HBVs and each human genotype from the GenBank database (NCBI, Bethesda, MD). Genetic comparison was performed by Clustal X program version 2.0.10 (European Bioinformatics Institute, Cambridge, UK). Subsequently, the phylogenetic tree was constructed using the Tamura – 3 parameter neighbor-joining method by Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 (The Biodesign Institute, Tempe, AZ).

2.7. HbsAg, HbcAg, and human albumin measurement in mouse sera

Mouse sera were diluted (1:10) and subjected to chemiluminescence enzyme immunoassay (CLEIA) (Fujirebio Diagnostic, Inc., Tokyo, Japan) to detect HBV surface antigen (HbsAg) and HBV core – related antigen: – the antigen which includes both the HBV pre-core/core proteins (HbcAg) (Kimura et al., 2005; Shinkai et al., 2006). HbcAg measurement by this assay implies detection of pre-core/core proteins, including core protein and HBeAg (Kimura et al., 2002, 2005; Rokuhara et al., 2003; Wong et al., 2007). HbcAg also showed a good correlation with HBV DNA levels in Asian patients (Kimura et al., 2002; Rokuhara et al., 2003, 2005) and inhaled parameters, including fibrosis scores, inhaled HBV, cccDNA and nuclear HbcAg (Wong et al., 2007). To expose the core protein and HBeAg, the diluted serum was first incubated with the solution that contains sodium dodecylsulfate. Subsequently, the lysate was added to the plate coated with primary antibody to HbcAg and HBeAg. After incubation, the plate was washed to discard excess primary antibody and the secondary antibody labeled with alkaline phosphatase was added. Upon addition of substrate solution, the incubated reaction was measured by chemiluminescent enzyme immunoassay (CLEIA). Fully automated analysis was performed using the Lumipulse® System (Fujirebio Diagnostic, Inc., Tokyo, Japan). Human serum albumin (h-Alb) levels were determined applying a commercial enzyme linked immunosorbent (ELISA) test kit (Bethyl Laboratories Inc., Montgomery, TX).

2.8. Immunohistofluorescence assay

To detect HbcAg and human albumin, thick mouse liver tissue was prepared by cutting the frozen mouse liver with a Leica CM1900 Cryostat-microtome (Meyer Instruments, Inc., Houston, TX) and mounting the slices on glass slides. Histological analysis was performed by immunofluorescence assay as previously reported (Sugiyama et al., 2006). Briefly, mouse liver tissue was blocked by DakoCytomation antibody diluent (Dako North America, Inc., Carpinteria, CA) for 10 min at room temperature. After drying by air, the tissue was incubated in the dark with 50 μg/ml of polyclonal rabbit anti-hepatitis B virus core antigen (HbcAg) (Dako North America, Inc., Carpinteria, CA) for 1 h at 37 °C. After washing 5 times with 1× phosphate buffered saline (PBS) (GIBCO, Invitrogen Corporation, Carlsbad, CA) the tissue was incubated with 50 μg/ml of Cy3® goat anti-rabbit IgG (H + L) (Invitrogen Molecular Probes, Eugene, OR) or 5 μg/ml of goat anti-human albumin FITC (Bethyl Laboratories, Inc., Montgomery, TX) in the dark at 37 °C for 1 h. After washing 5 times with 1× PBS, the tissue was mounted by VECTASHIELD mounting medium with DAPI (Vector Laboratories, Inc., Birmingham, CA). The stained mouse tissue was examined under a Nikon Microscope ECLIPSE E800 (Nikon Instruments, Inc., Melville, NY).

3. Results

3.1. Serum HBV DNA, HbsAg, HbcAg and human albumin level quantitation

Upon first inoculation with serum containing 10^4 copies of gibbon or orangutan HBV, none of the mice could be infected. Then, chimeric mice were re-inoculated with 10^5 copies. One mouse died before re-inoculation. After re-inoculation, mouse sera were collected once a week. Samples were subjected to quantitative HBV DNA analysis by real-time PCR while HbsAg and HbcAg were quantitatively determined by CLEIA. Four of 5 mice could be infected with gibbon or orangutan HBV. Two mice each from the gibbon and orangutan groups showed levels of HBV DNA, HbsAg, and HbcAg with the remaining mouse not displaying any of these markers. In detail, HBV DNA and HbcAg could be detected in serum samples from two mice of the gibbon group (code 101 and 103) and two mice of the orangutan group (code 201 and 202) 4 weeks after inoculation. HbsAg was present in the orangutan group 4 weeks and in the gibbon groups 6 weeks after inoculation, respectively.

In this experiment, the expected HBV markers HBV DNA, HbsAg and HbcAg could be detected in mouse serum around 4–5 weeks after inoculation. This finding matched previous studies that had
inoculated human HBV genotypes A2, C2, B1 and J into chimeric SCID mice (Sugiyama et al., 2009; Tatamatsu et al., 2009). The time appearance and progression of non-human primate HBV markers presented as same as with human HBV markers (Ganem and Prince, 2004). Human albumin (h-Alb) was measured by ELISA as a quality control. Serum h-Alb levels prior to inoculation of all mice in this study exceeded 7 mg/ml indicating a human hepatocyte replacement index (RI) of over 70 percent (PhoenixBio Co, Ltd., Hiroshima, Japan) and were stable during the experiment (Fig. 1). Mean alanine aminotransferase (ALT) levels were around 200 IU/L in the uPA/SCID mouse sera. After non-human primate HBV inoculation, ALT levels slightly increased in this study (data not shown).

3.2. Intrahepatic cccDNA detection in liver tissue and mouse sera

Using the specific primers that amplify only cccDNA (Suzuki et al., 2009), HBV cccDNA was detected in mouse liver tissue from those mice that had been infected with gibbon and orangutan HBV (Fig. 2A). Moreover, cccDNA was found in the sera of mice infected with gibbon HBV (Fig. 2B).

3.3. Phylogenetic analysis of the entire HBV genome from mouse sera

HBV-DNA from all four mice was amplified and subjected to sequencing of the entire genome. The sequences from mouse sera were identical to HBV from gibbon or orangutan serum determined prior to inoculation (gibbon code GD14, GenBank ID: HQ603061; orangutan code OS25, GenBank ID: EU155824) (Fig. 3). Comparison between the complete HBV sequences from mouse sera and gibbon or orangutan sera prior to inoculation showed 99.9% and 100% similarity, respectively.

3.4. HBcAg and human albumin detection in mouse liver tissue

The mouse liver was also tested for HBcAg by staining with polyclonal rabbit anti-HBcAg and goat anti-rabbit IgG labeled with Cy3 (Fig. 4A). To locate the human hepatocyte area in chimeric mouse liver, the tissue was examined for human albumin. The same mouse liver tissue was stained with goat anti-human albumin conjugated with FITC (Fig. 4B). The study confirmed that HBcAg was found in the same area of human hepatocytes (Fig. 4C).

4. Discussion

In a previous study, Hu et al. (2000) constructed a phylogenetic tree and found that the S gene sequence from two chimpanzees clustered with human HBV genotypes A and C which could suggest possible virus transmission from human to chimpanzee. Currently, there is no evidence indicating natural infection of humans with non-human primate HBV (Noppornpanth et al., 2003). However, non-human primate HBV would be transmitted to humans because the respective HBV genomes are largely similar.

In this study, cross-species transmission was performed using chimeric mice containing human hepatocytes. The results showed that HBV-DNA, HBsAg and HBcrAg can be detected in sera of mice inoculated with HBV-DNA positive sera from orangutan or gibbon carriers. Detection of HBV cccDNA in liver as well as immune staining data have provided the evidence that gibbon and orangutan HBV can be replicated in human hepatocytes of the chimpanzee mice sero-positive for HBV DNA. HBsAg and HBV DNA concentrations could increase over time following inoculation. Interestingly, based on phylogenetic analysis, all strains of HBV sequences obtained from mouse sera inoculated with gibbon or orangutan HBV carrier sera grouped with HBV from gibbon and orangutan sera determined prior to inoculation. Nucleotide comparison between HBV in mouse sera and the HBV strain used for inoculation showed 100% identity.

HBV infection depends on the infectious doses of HBV inoculums and host factors. In our experiment, one SCID mouse with human hepatocytes could not be infected with non-human primate HBV. This mouse lacks T- and B-lymphocytes as a protection from viral infection but still, it remains clear from viral infection. Some
researchers have attributed this to innate immunity of SCID mice (Lin et al., 1998). SCID mice have a normal innate immune system such as monocytes and macrophages (Ansell and Bancroft, 1989) which probably plays an important role in these mice. Moreover, infection of human hepatocytes with non-human primate HBV may be difficult due to the higher infectious dose required. Moreover, research on the early step of non-human primate HBV attachment to human hepatocytes has not been performed and the pathway of non-human primate HBV infection is still unclear. In comparison with human HBV, it might not be easy for non-human primate HBV to infect human hepatocytes.

Notably, a previous study has reported a new human HBV genotype (HBV-J) isolated from a Japanese patient with hepatocellular carcinoma (Tatematsu et al., 2009). The first HBV strain of interspecies HBV genotype J was closely related to gibbon and orangutan HBV strains and had a deletion of 33 nucleotides at the preS1 region identical to non-human primate strains. Interestingly, this patient used to live in Borneo—a gibbon and orangutan habitat and hence, an endemic area (Tatematsu et al., 2009). He may have been infected with non-human primate HBV either by close contact or by eating raw meat of non-human primate HBV carriers (personal communication). However, infection of humans with non-human HBV is still rare.

Fig. 2. CccDNA detection in liver (A) and sera (B) of mice that infected with gibbon HBV (Gi) or orangutan HBV (Ou). Neg represents negative PCR control (lacking DNA template). Arrow represents the target cccDNA PCR product.

Fig. 3. Phylogenetic analysis of the entire HBV sequence obtained from mouse sera and available sequences of non-human primate HBV strains from GenBank database. Support of each branch as determined from 1000 bootstrap samples. Only 75% bootstrap values are indicated at each node. The scale bar at the bottom represents the genetic distance. Non-human primate HBV sequences obtained from our study are indicated by symbol (gibbon, □; orangutan, □). HBV sequences obtained from mouse sera were ● and ■ for mice inoculated with gibbon and orangutan sera, respectively.
primate HBV by eating raw meat or close contact with non-human primate HBV carriers would be hypothesis.

Yet, it has been reported that chimeric SCID mice with human hepatocytes can be infected by inoculation with HBV positive chimpanzee sera (Tabuchi et al., 2008) similar to what has been found in this study. In that previous study, human hepatocyte transplanted chimeric mice were used to study the HBV infectious titer in sera of pre-acute and late acute phase patients. These mice were inoculated with HBV infected chimpanzee sera. The chimeric mice also displayed HBV infection markers such as HBSAg, anti-HBc and anti-HBs as has been shown in this research. But the HBV in chimpanzee sera used to inoculate chimeric mice was human HBV, in contrast to the non-human primate HBV used in this study. Thus, this study is the first scientific evidence to prove and confirm that non-human primate such as gibbon and orangutan HBV can infect and replicate in human hepatocytes. Moreover, this finding can support the discovery of the HBV-J genotype which was found in the human and the assumption that humans can be infected with non-human primate HBV strains is still hypothesis.

Even though uPA-SCID mice with human hepatocytes constitute a useful animal model to study cross-species transmission, this model does not mirror the humoral and cellular immune response of the natural host. In real life, humans may be infected with non-human primate HBV and may clear this virus by their immune system. However, the results of this study indicated that human hepatocytes of chimeric mice have been infected with HBV from gibbon, orangutan and also with human HBV from infected chimpanzee sera as previously reported (Tabuchi et al., 2008). Previous studies have demonstrated cross-species transmission of human HBV to non-human primates, of non-human primate HBV to other species of non-human primates, and this study has demonstrated that non-human primate HBV can replicate in human hepatocytes. As non-human primates represent various virus reservoirs, not only of HBV but also lymphocryptovirus (LCV), Epstein-Barr virus (EBV), or simian foamy virus (SFV), people in close contact with animal HBV carriers should be aware and protect themselves from animal bites or exposure to infected blood or body fluids of non-human primates.

Acknowledgements

This research was supported by a grant-in-aid from the Ministry of Education, Culture, Sports, Science, and Technology and a grant-in-aid from the Ministry of Health, Labour, and Welfare of Japan. N. Takeda Science Foundation, the Department of Virology & liver Unit, Nagoya City University Graduate School of Medical Sciences, Japan, the exchange program fellowship under the program “Strategic Scholarship for Frontier Research Network” of Thailand’s Commission on Higher Education, the Center of Excellence in Clinical Virology, Chulalongkorn University, the Chulalongkorn University Graduate Scholarship to Commemorate the 72nd Anniversary of His Majesty King Bhumibol Adulyadej, the Postdoctoral Fellowship, the National Research University Project of CHE (HR1155A) and Ratchadaphiseksomphot Endowment Fund.

We would like to thank the veterinary doctors and staff of the Dusit zoo, Krabok Koo and Khao Pratuchang Wildlife Breeding Center for sera and taking care of all those non-human primates. We also would like to thank Ms. Kanako Tatematsu, Ms. Matsue Naganuma, and the entire staff of the Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Thailand and the Department of Virology & Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya City University, Japan for their assistance. Finally, we would like to thank Ms. P. Hirsch for reviewing the manuscript.

References

Fig. 4. Immunohistofluorescence of SCID mice infected with gibbon HBsAg-positive serum. Mouse liver tissue incubated for HBcAg (A), human albumin (B), and co-localization of HBcAg and human albumin (C).
mouse liver with human hepatocytes and in vivo infection with hepatitis B virus. Hepatology 33, 981–988.

